
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 69(3) (2017), Pages 368–374

On quotient digraphs and voltage digraphs∗

C. Dalfó
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Abstract

We study the relationship between two key concepts in the theory of
digraphs, those of quotient digraphs and voltage digraphs. These tech-
niques contract or expand a given digraph in order to study its character-
istics, or to obtain more involved structures. As an application, we relate
the spectrum of a digraph Γ, called a voltage digraph or base, with the
spectrum of its lifted digraph Γα. We prove that all the eigenvalues of Γ
(including multiplicities) are, in addition, eigenvalues of Γα. This study
is carried out by introducing several reduced matrix representations of
Γα. As an example of our techniques, we study some basic properties of
the Alegre digraph and its base.

1 Introduction

In the study of interconnection and communication networks, the theory of digraphs
plays a key role as, in many cases, the links between nodes are unidirectional. Within
this theory, there are two concepts that have shown to be very fruitful to construct
good and efficient networks. Namely, those of quotient digraphs and voltage di-
graphs. Roughly speaking, quotient digraphs allow us to give a simplified or “con-
densed” version of a larger digraph, while the voltage digraph technique do the
converse by “expanding” a smaller digraph. From this point of view, it is natural
that both techniques have close relationships. In this paper we explore some of such
interrelations.

The paper is organized as follows. In the rest of this section, we give some basic
background information. In Section 2 we present the basic definition and results on
regular partitions and their corresponding quotient digraphs. In Section 3, we recall
the definitions of voltage and lifted digraphs. Finally, Section 4 is devoted studying
a representation of a lifted digraph with a matrix whose size equals the order of the
(much smaller) base digraph.

1.1 Background

Here, we recall some basic terminology and simple results concerning digraphs and
their spectra. For the concepts and/or results not presented here, we refer the reader
to some of the basic textbooks on the subject; for instance Chartrand and Lesniak [3]
or Diestel [5].

Throughout this paper, Γ = (V,E) denotes a digraph, with vertex set V and
arc set E, that is strongly connected, namely, each vertex is connected to all other
vertices by traversing the arcs in their corresponding direction. An arc from vertex
u to vertex v is denoted by either (u, v), uv, or u → v. We allow loops (that is,
arcs from a vertex to itself), and multiple arcs. The set of vertices adjacent to and
from v ∈ V is denoted by Γ−(v) and Γ+(v), respectively. Such vertices are referred
to as in-neighbors and out-neighbors of v, respectively. Moreover, δ−(v) = |Γ−(v)|
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and δ+(v) = |Γ+(v)| are the in-degree and out-degree of vertex v, and Γ is d-regular
when δ+(v) = δ−(v) = d for all v ∈ V . Similarly, given U ⊂ V , Γ−(U) and Γ+(U)
represent the sets of vertices adjacent to and from (the vertices) of U , respectively.
Given two vertex subsets X, Y ⊂ V , the subset of arcs from X to Y is denoted by
e(X, Y ).

The spectrum of Γ, denoted by spΓ = {λm0
0 , λm1

1 , . . . , λmd
d }, is constituted by

the distinct eigenvalues λi (with the corresponding algebraic multiplicities mi), i =
0, 1, . . . , d, of its adjacency matrix A.

2 Regular partitions and quotient digraphs

Let Γ = (V,E) be a digraph with n vertices and adjacency matrix A. A partition π
of its vertex set V = U1 ∪ U2 ∪ · · · ∪ Um, for m ≤ n, is called regular if the number
of arcs from a vertex u ∈ Ui to vertices in Uj only depends on i and j. Let cij
be the number of arcs which join a fixed vertex in Ui to vertices in Uj. A matrix
characterization of this property is the following: Let S be the n×m matrix whose
i-th column is the normalized characteristic vector of Ui, so that S>S = I (the
identity matrix), and consider the so-called quotient matrix

B = S>AS. (1)

Then, π is regular if and only if

SB = AS. (2)

The digraph π(Γ) whose (weighted) adjacency matrix is the quotient matrix is called
quotient digraph, and their arcs can have weight different from 1. More precisely,
the vertices of the quotient digraph are the subsets Ui, for i = 1, 2, . . . ,m, and the
arc from vertex Ui to vertex Uj has weight cij. For the case of quotient digraphs
obtained from non-directed graphs, see Godsil [7] (Lemma 2.1). From this, we have
the following basic result, where the regular partition of V is called a regular partition
of A.

Lemma 2.1. Every eigenvalue of the quotient matrix B of a regular partition of A
is also an eigenvalue of A, that is, spB ⊂ spA.

3 Voltage and lifted digraphs

Voltage (di)graphs are, in fact, a type of compounding that consists in connecting
together several copies of a (di)graph by setting some (directed) edges between any
two copies. Usually, the symmetry of the obtained constructions yields digraphs with
large automorphism groups. As far as we know, one of the first papers where voltage
graphs were used for construction of dense graphs is Alegre, Fiol and Yebra [1],
but without using the name of ‘voltage graphs’. This name was coined previously
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by Gross [8]. For more information, see Gross and Tucker [9], Baskoro, Branković,
Miller, Plesńık, Ryan and Siráň [2], and Miller and Siráň [10].

Let Γ be a digraph with vertex set V = V (Γ) and arc set E = E(Γ). Then, given
a group G with generating set ∆, a voltage assignment of Γ is a mapping α : E → ∆.
The lift Γα is the digraph with vertex set V (Γα) = V ×G and arc set E(Γα) = E×G,
where there is an arc from vertex (u, g) to vertex (v, h) if and only if uv ∈ E and
h = gα(uv). Such an arc is denoted by (uv, g).

3.1 The adjacency matrix of the lifted digraph

It is clear that the base digraph with the voltage assignment univocally determines
the adjacency matrix of its lift. To define it we need to consider the following
concepts. Given a (multiplicative) group G together with a given order of its elements
g1(= 1), g2, . . . , gn, a G-circulant matrix is defined as a square matrix A of order n
indexed by elements of G, with first row a1,1 = ag1 , a1,2 = ag2 , . . ., a1,n = agn , and
elements

(A)g,h = ahg, g, h ∈ G.

Thus, the elements of row g are identical to those of the first row, but they are
permuted for the action of g on G. In particular, a circulant matrix (see Davis [4])
corresponds to a G-circulant matrix with the cyclic group G = Zn and natural order
0, 1, . . . , n − 1. Another example is the adjacency matrix A of the Cayley digraph
Cay(G,∆) of the group G with generating set ∆, which is a G-circulant matrix whose
first row has elements a1,j = 1 if gj ∈ ∆, and a1,j = 0, otherwise.

The concept of block G-circulant matrix is similar, but now the elements ag1 ,
ag2 ,. . . , agn of the first row (and, consequently, the other rows) are replaced by the
m×m matrices (or blocks) A1 = Ag1 ,. . . , An = Agn .

From the above definitions, the following result is straightforward.

Lemma 3.1. Let Γ be a base graph with voltage assignment α on the group G =
{g1(= 1), . . . , gm}. Let Γi be the spanning subgraph of Γ with arc set α−1(gi), and
adjacency matrix Ai, for i = 1, . . . ,m. Then the adjacency matrix A of the lifted
digraph Γα is the block G-circulant matrix with first block-row A1,A2, . . . ,Am. 2

3.2 The spectrum of the lifted digraph

Apart from the obvious approach of computing the characteristic polynomial of the
adjacency matrix, it seems to be difficult, in general, to get a general result about the
whole spectrum of the lifted digraph Γα. However, we have the following proposition.

Proposition 3.2. Let Γ be a base graph with vertices u1, . . . , un, and a given voltage
assignment α on the group G = {g1, . . . , gm}. Let B =

∑m
i=1 Ai, where Ai is the

adjacency matrix of the subgraph of Γ with arc set α−1(gi). Then

spB ⊂ spΓα.
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Figure 1: The Alegre digraph (left), and its quotient digraph (right). The adjacencies
in the copy 0 are represented with a thick line.

Proof. Just note that B is the quotient matrix of a regular partition, so Lemma 2.1
applies.

An example: The Alegre digraph

The Alegre digraph is the 2-regular digraph with n = 25 vertices and diameter k = 4
represented in Figure 3.2 (left). This digraph was found by Fiol, Yebra, and Alegre
in [6]. The Alegre digraph can be seen as the lifted digraph Γα of the base digraph
Γ with the voltage assignments shown in Figure 3.2 (right).

Then, the nonzero blocks of the first row constituting the adjacency matrix of Γα

are

A0 =


0 1 1 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 1
0 0 0 0 0

 , A1 =


0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
1 0 0 0 1

 , A4 =


0 0 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 .

Thus, Γα has a regular partition with five sets of five vertices each. As expected,
the corresponding quotient digraph is the base graph Γ, with quotient matrix

B =
4∑
i=0

Ai =


0 1 1 0 0
0 1 1 0 0
0 0 0 2 0
1 0 0 0 1
1 0 0 0 1

 ,

and spectrum spB = {2, 0(2), i,−i}.
In fact, the spectrum of the Alegre digraph is

spΓα =

{
2, 0(10), i(5),−i(5),

1

2
(−1 +

√
5)(2),

1

2
(−1−

√
5)(2)

}
,
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where, in agreement with Proposition 3.2, we observe that spB ⊂ spΓα. Notice also
that, in this case, the other eigenvalues of Γ are those ( 6= 2) of the undirected cycle
C5, whose spectrum is

spC5 =

{
2,

1

2
(−1 +

√
5)(2),

1

2
(−1−

√
5)(2)

}
.

4 Matrix representations

In this section, we study how to fully represent a lifted digraph with a matrix whose
size equals the order of the base graph.

We deal with the case when the group G of the voltage assignments is cyclic.
Thus, let Γ = (V,E) be a digraph with voltage assignment α on the group G =
Zm = {0, 1, . . . ,m − 1}. Its polynomial matrix B(x) is a square matrix indexed by
the vertices of Γ, and whose elements are polynomials in the quotient ring Rc

m−1[x] =
R[x]/(xm), where (xm) is the ideal generated by the polynomial xm. More precisely,
each entry of B(x) is fully represented by a polynomial of degree at most m− 1, say
(B(x))uv = puv(x) = α0 + α1x+ · · ·+ αm−1x

m−1, where

αi =

{
1, if uv ∈ E and α(uv) = gi,
0, otherwise.

i = 0, . . . ,m− 1.

For example, in the case of the Alegre digraph in Fig. 3.2, the polynomial matrix is

B(x) =


0 1 1 0 0
0 x4 x4 0 0
0 0 0 x+ x4 0
1 0 0 0 1
x 0 0 0 x

 ,

where (B(x))ij = αxr + βxs, with α, β ∈ {0, 1} and r, s ∈ Z5, means that there are
arcs from vertex (i, p) to vertices (j, p+r) or/and (j, p+s) if and only if α = 1 or/and
β = 1. More generally, it can be shown that (B(x)`)ij = α4x

4+α3x
3+α2x

2+α1x+α0

if and only if there are αh walks on length ` from vertex (i, p) to vertex (j, p + h),
for h = 0, . . . , 4.

For example, the first row of I + B(x) + B(x)2 + B(x)3 + B(x)4 has entries:
3 +x+x2 +x3 +x4, 1 +x+x2 +x3 + 2x4, 1 +x+x2 +x3 + 2x4, 1 +x+x2 +x3 + 2x4,
2 + x + x2 + x3 + x4. Note that all coefficients αi, for i = 0, . . . , 4, of the above
polynomials are non-zero, since Γα has diameter four. Notice also that the quotient
matrix of Γα is B(1).

By reading as columns, this means that if A is the adjacency matrix of the Alegre
digraph, then, the first row of I + A + A2 + A3 + A4 is

3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1.

The following result shows that the powers of B(x) yield the same information
as the powers of the adjacency matrix of the lifted digraph Γα.
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Lemma 4.1. Let (B(x)`)uv = β0 + β1x + · · · + βm−1x
m−1. Then, for every i =

0, . . . ,m − 1, the coefficient βi equals the number of walks of length ` in the lifted
digraph Γα, from vertex (u, h) to vertex (v, h+ i) for every h ∈ G.

Proof. The result is clear for ` = 0, 1. Then, the result follows easily by using
induction.

Note that in the above result, the products of the entries (polynomials) of B(x)
must be understood in the ring Rc

m−1.
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